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Abstract 

In this paper we prove that if R is a Noetherian local ring and I is an ideal of R, then I" can 
be generated by a quadratic sequence for all sufficiently large n. As an application, we show that 
if R is a Noetherian ring and I is an ideal of R, then I n is of quadratic type for all sufficiently 
large n. (~) 1998 Elsevier Science B.V. 

AMS Classification: 13A30, 13B25, 13D02 

1. Introduction 

Let R be a Noetherian ring, an ordered sequence Xl, . . . ,xn  of  a ring R is said to be 

a d-sequence if either (both) of  the following equivalent conditions hold: 
(1) ((xl . . . .  ,x i-1)  :xixk) = ( ( x l , . . . , x i -1 )  :xk) for all 1 < i < n and for all k > i, 

(2) ( ( x l , . . . , x i - 1 ) : x i ) N ( X l , . . . , x , )  = ( x l , . . . , x i - x )  for all 1 < i < n, 
where (Xl . . . . .  x~_~) is interpreted as 0 when i --= 1. This concept was introduced by 
Huneke [2] in order to calculate the asymptotic value of  depth(R/I n) for some specific 

ideal I of  R. He later developed the theory of  weak d-sequences [3] and used it 
effectively to calculate the asymptotic value of  depth(R/I n ) for an even larger class of  

examples of  ideals I. As the terminology suggests, d-sequences are weak d-sequences. 
Recently, Raghavan's  work about quadratic sequences [6] simplifies and extends the 

theory of  d-sequences and weak d-sequences. These sequences have been shown to 

have many nice properties; for instance, ideals generated by d-sequences are o f  linear 
type [2]; ideals generated by quadratic sequences are of  quadratic type [7]. In his 

thesis [5], Martin explored a connection between d-sequences and quadratic sequences, 
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namely, he proved that if I is an ideal generated by a d-sequence, then all powers o f  I 
are generated by quadratic sequences This motivates us to ask the following question. 

Question. Let R be a Noetherian ring, and I be an ideal o f  R. Then does there exist 
an integer N such that for all n > N I n can be generated by a quadratic sequence? 

Our main result Theorem 3.8 and Corollary 3.10 provide two classes of  rings for 
which the answer of  the question is positive, namely, if R is a Noetherian local ring 

with infinite residue field or if R = S[X,X-1], where S is a Noetherian ring and X is 
an indeterminate. 

As applications, we shall reprove in Section 4 the following results. 

Theorem 4.1 (Johnston and Katz [4]). Let R be a Noetherian ring and I be an ideal 
of  R; then Vn >> 0, reltype(U) <_ 2. 

Theorem 4.2 (Brodmann [1]). Let R be a Noetherian ring and I be an ideal of  R; then 
for n sufficiently large, Ass(R/I n) is independent of  n. In particular, Un>_IASS(R/I n) 
is finite. 

The author thanks Craig Huneke for pointing out the result of  Martin's. 

2. Some definitions 

In this section, we shall recall some definitions. 

Definition 2.1. Let R be a Noetherian ring, I = (xl . . . . .  xn) be an ideal o f  R. Let 

R[It] = ~ Int n 
n>_O 

be the Rees algebra associated to I ;  then there is a canonical surjection ~b : R[X1 . . . . .  Xn] 
R[It] given by X / ~  xit. The relation type of  I ,  denoted by reltype(1) is defined 

to be the least integer r so that Ker ~a has a generating set whose elements have degrees 

at most r. 

Remark. It is well-known that the invariant reltype(I) only depends on the ideal I and 

is independent o f  the choice of  a generating set of  I. (cf. [6]) 

I f  reltype(I) < 1, then we say that I is o f  linear type. I f  reltype(I) <_ 2, then I is 

said to be of  quadratic type. 
Before giving the definition of  quadratic sequence, we adopt some notations from [6]. 

By a poset, we mean a partially ordered set. Let A be a finite poset. A subset Z of  

A is said to be an ideal if it satisfies the following property: 

i fa  E Z, ). E A, and ). _< a, then ). E Z. 
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Let R be a ring and {x~ 12 E A} be a set of  elements of  R indexed by A. Given 
an ideal -Y of  A, we denote by Xz, the ideal generated by {x, let E £'}, and call it 
the A-ideal (of  R) defined by -Y. The empty subset of  A is an ideal and the A-ideal 
defined by it is the ideal 0. Let X = XA, the ideal generated by {x~ [ 2 E A}. 

Given an ideal L" and an element 2 of  A, we say that 2 lies just above S if 2 ~ S 
but every element a E S such that a < ). belongs to S. We say that ). lies inside or 
just above 2; if  it is either belongs to 2; or is just above S. 

Definition 2.2 (c f  Raghavan [6]). We say that {x,~ ] 2 E A} is a quadratic sequence if, 
for every pair (X,)~) where S is an ideal o f  A and 2 is an element of  A that lies just 
above (equivalently, lies inside or just above) Z, there exists an ideal O of  A such 
that 

(1) (Xz : x ; . )~XC_Xo  and 
(2) x~Xo c x~x .  

One of  the important result in [7] is that ideals generated by quadratic sequences 
are of  quadratic type. 

Our primary tool in this article will be the notion of  superficial elements. 

Definition 2.3. Let R be a Noetherian ring, I be an ideal o f  R, and G(I)  = ~>_o In/H+l 

be the associated graded ring of  I .  An element x E R is called a superficial element 
for I of  degree k i f x  E I k \ f f + l  such that (0 :o(t) x*)  N G, = 0 for all n sufficiently 
large, where x* = x + I k+l is the leading form of  x in G(I) and G~ = In/H +1 is the 
n-th component of  G(1). 

We would like to mention the following important result in [9, p. 287]. 

Theorem 2.4. I f  (R, m) is a Noetherian local ring with an infinite residue f ieM and I 

is an m-primary ideal o f  R, then there exists a superficial element for  I o f  degree 1. 

3. Powers of ideals and quadratic sequences 

We begin this section by proving the following theorem. 

Theorem 3.1. Let R be a ring and I = (xj . . . . .  xt). Let Ro = R and Ri = R/(xl . . . . .  xi) 
for  i = 1 , . . . , t  - 1. Suppose that there exists an N > 0 such that 

(i) Vl < i < t ,  

((0) :x~Ri-I)  NInRi-1 = 0 Vn > N. 

(ii) V1 < i < t ,  

InRi_l : x i R i _  1 : In-lRi_l  + (0) : x i R i _  1 Vn > N. 
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Then f o r  every n > N ,  ~ , - I  , - I  {x  l , x  1 x2 . . . . .  x l xt . . . . .  x t } f o r m  a quadratic sequence under 

the reverse lexicographic order 

°-~ < ~ - %  < < ~  ~7 < ~, ~ < . . . . . .  

Proof .  Let n > N be fixed. Let T ~ , -1  , - t  __ : { X I , X  l X 2 . . . . .  X 1 X t . . . . .  X t } be indexed by a 

poset A (In fact, a totally ordered set) so that T = {x~ I 2 C A} and a < ). i f  and only 

i f  x ,  is smaller than x;. under the reverse lexicographic order. 

Let nl . . . .  ,nt be nonnegative integers such that nl + ' "  + nt z n; then there is an 

index 2 C A such that x;~ = x~ 1 . . . x~  '. Let 2; = {a E A l a  < 2}; then the A-ideal  

n, under the reverse Xs is generated by elements in T which are smaller than x ~ ' . . . x  t 

lexicographic order. To show Theorem 3.1, it is sufficient to show that there is an ideal 

19 of  A such that 

(1) (Xs  : x ~ ) M X  C_Xe, and 

(2) x~Xo C_XzX. 

Let 1 < s < t be the largest integer so that n~ # 0. Let J ---- ( X l  . . . . .  Xs_l ) l  n-1 i f  

s _> 2 and J = 0 i f  s = 1; then J is generated by the elements in T which are smaller 

than x~ under the reverse lexicographic order, so that J --  Xo for some ideal 19 of  A 

and J is an A ideal. We shall show in the following that J satisfies the statements (1)  

and (2). 

I f  s = 1, then nl = n, X z  = 0 and J = 0. Since ((0) " x~) N I  n = 0, (1 ' )  and (2 ' )  

hold. 

Assume s > 2. Notice that 

) I n - I  n l + l  n2 ns-i n ~ - l ,  r n - 1  
Xln' . . . x n ~ ( X l  . . . . .  X s - I  7__ Xl X2 . . . X s _ l X s -  ~Xsl ) 

and 

1'11 n,+l n 3 ?Is 1 r/~--l, ,  r n - - I  
+xl x2" x3 " " X s - l X s  ~Xsi ) 

+ + X ~ I  n~-2 n s - l + l  ns--le rn--1 
. . . . . .  Xs--2 Xs-- 1 Xs I, X s l  ) 

n l + l  n2 rt~_l ns--I nl tL-2 n~-iq-[ ns--l~ ~ r  
X 1 X 2 " ' ' X s _  l x  . . . . . .  X 1 " ' ' X s _ 2 X s _  1 X s [ L~-lX ~ I a C z~}, 

we see that Jx~ C_XsX and (2)  is satisfied. Moreover,  (2)  implies that 

( x s  :x~)  n x  = J + (Xs : x~) n (xs . . . . .  xt)  ~ 

as X -- J + (xs . . . . .  xt )  n. Therefore, to show (1), it remains to show that 

( X s  " x;  ) n (Xs . . . . .  x , )"  G J. 

Ii 
Let r E (x . . . . . .  xt) ~ such that rx'~ 1 ...X~s s E Xz .  Observe that an element xll . . . .  xt E T 

belongs to {x~ I cr E S} i f  and only if  there is an i < s such that lj  -- nj for j < i and 

li >_ ni + 1.  Therefore, 

nl r t2+l rt~-2 ns- l+l  x 
X z C ( X ~ I + I ) + ( X 1  X 2 ) - ~ - " ' "  + (X~ 1 " ' ' X s _ 2 X s _  1 ). 
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In particular, there are r i E R, i = 1 . . . .  , s -  1 such that 

n~ n l + l  - -  nl  /12+1 nl ns-2 ns 1+1 
r X ~  ~ • . . X s  -~ r l x  1 ~- F2X 1 x 2 -[- . . .  ~- r s _ l X  1 . . . X s _ 2 X s _  1 . 

Mult ip ly ing  by x~', we obtain 

rx~L  ns- i  ns+n n l + l  n nl  n 2 + l  n nl ns-2 n ~ - i + l  n 
• . . X s _  l x  s ~ r l X  1 X s q-  ? ' 2 X l  X 2 X s -~- . . .  -~_?,s_lXl  . . . X s _ 2 X s _  1 X s .  

Cla im.  Let 0 < i < s - 1; then in Ri, 

ni+l ns- i  n~÷n n i + l ÷ l  rt n j~  I n i + 2 + l  n 
r X i +  1 • . . X s _ l  Xs z r i + l X i + l  Xs -~ r i+2Xi+l  x i+2  Xs 

tl~+l ns-2 n s - i + l  n 
q - . . .  ~- r s _ l X i +  1 . . . X s _ 2 X s _ l  X s .  

We prove the c la im by  induct ion on i. 

I f  i = 0, then there is noth ing  to prove. 

Assume that the c la im holds for some i, 0 < i < s - 2; then in Ri 

nl+l 
Xi+ 1 L = O, 

where 

n~+2 n~ i ns+n n ~li~-2q-1 t~ 
L = r x i +  2 • • . X s _  1 Xs  - r i + l X i + l X s  - r i+2x i+2  Xs 

?li+2 ?Is-2 n~_ 1 --l i1 
. . . . .  r s -  l X i + 2  " " " X s - - 2  X s -  1 Xs • 

It fol lows that L E ((0)  • xn+lRi )  N I " R i  = 0 by  assumption,  and therefore in Ri+l 

hi+2 ns--I  n~+n ?/i+2-}-1 ~/ hi+2 ?Is 2 r t s - - l~- [  n 
F X i +  2 • • . X s _ l  Xs z r i+2Xi+2 X s -4- • • • -~- r s _ l X i +  2 " " " X s _ 2 X s _  1 X s .  

This completes  the proof  o f  the claim. 

By setting i = s - 1 in the claim, we obtain that rx~ s+n = 0 in Rs-1.  Since r E I n 

and ( (0) :X2snRs_l )NlnR~_a = 0, r = 0 in R~-I .  So we have 

r E (Xs . . . . .  x t )  n N (Xl,... ,Xs--I ) ~ I n A (Xl . . . . .  Xs--1 ). 

Thus,  r C J by  the fol lowing lemma.  This completes the proof. [] 

L e m m a  3.2. L e t  R b e  a N o e t h e r i a n  r ing ,  t >_ 2 a n d  I = (x l  . . . . .  x t  )R. L e t  Ro = R a n d  

R i = R/ (x1  . . . . .  x i ) f o r  i = 1 . . . . .  t - 1. A s s u m e  t h a t  f o r  s o m e  n > 0 a n d  V1 < i < t -  1 

I n R i _ l  : x i R i _ l  = I n - l R i _ l  + ( 0 )  : x i R i _ l .  

T h e n  V j =  1 . . . . .  t - 1  

I n N (x l  . . . . .  x j )  = (Xl . . . . .  X j ) I  n - l .  

Proof. We proceed by induct ion on  j .  
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If j =  1, then 

I n A (X 1 ) = xl ( I  n • xl ) ZX l ( I  n-1 + (0) ; Xl ) = x lU  - j .  

Assume j > 2. Notice that by assumption, 

InRj_l •xjRj_l  C xj(InRj_l :x jRj_ l )  

= x j ( In - lR j - i  + (O)'xjRj_I) 

= x j ln- lRj_ l .  

Therefore, we have 

I n f-) (Xl . . . . .  Xj) Q xj I  n-! + (Xl , . . . ,x j -1) .  

However  by induction, we have 

I n N (xl . . . . .  xj-1 ) C(xl . . . . .  xj_l )I n-I, 

it follows that 

I n n ( x l  . . . . .  xj)  C xjI  n-1 + I  n N(Xl . . . . .  x j - l )  

= x jU -1 + (xl . . . . .  x j - i  )1 "-1 

= (Xl . . . . .  xj ) I  "-1. [] 

Observe that a necessary condition for an ideal I satisfying (ii) in Theorem 3.1 is 
that I has a superficial element of  degree 1. Therefore, rings having the property that 
every ideal has a superficial element of  degree 1 will be our first consideration. We 

shall prove as follows that two classes of  rings have such property. 
By modifying the original proof  of  Theorem 2.4, it is easy to obtain the following. 

L e m m a  3.3. Let (R, m) be a Noetherian local ring with an infinite residue field, and 

I be an ideal o f  R. Then Jot anyf in i te fami ly  {I~} o f  ideals o f  R such that I ~I~ V~, 
there is an element x E I \ m l  such that x is a superficial element for  I and x q5 I~V~. 

Lemma 3.4. Let R be a Noetherian ring containing an infnite subset A with the 

following properties: 
(1) Every element in A is an unit. 
(2) Vn > 1, the subset S(A,n)  o f  R consists o f  only units and O, where S(A,n)  is 

the set o f  the determinants o f  all the n × n matrices with entries in A. 

Let I be an ideal o f  R generated by {xl . . . . .  xt }; then for  any finite family {I~} o f  
ideals o f  R such that I ~ [~ V~, there is an element x c I o f  the form ~ l - I  2ixi with 

), E A such that x is a superficial element for  I and x ~ I~V~. 

An immediate corollary of  the above lemmas is: 
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Corollary 3.5. Let  R be as in Lemma 3.3 or in Lemma 3.4 and 1 be an ideal o f  R. 

Then there is an element x E I \ m[ such that 

( i )  ( ( 0 )  : x n) n I" = (0 )  Vn >> 0. 

and 

( i i)  I " : x = I  "-J  + ((0) : x)  V n > > 0  

Proof .  Let R be as in Lemma 3.3 or in Lemma 3.4 and I be an ideal of  R. Let 1~ be 

the set o f  the associated prime ideals that do not contain 1; then it is easy to verify that 

i f y  E I \UI~ ,  then ((0) : y n ) n l n  = (0) Vn >> 0. Hence by Lemma 3.3 or Lemma 3.4, 

1 has a superficial element x of  degree 1 such that (i)  holds. Moreover,  since x is a 

superficial element for I ,  there is a positive integer c such that ( I  n : x )  N I C = I n-1 

for all n > c. On the other hand, by Artin-Rees Lemma, there is an integer k > 0 

such that I n N (x) C xI  "-k Vn > k. Therefore, for n > k + c and a E (1" : x), we have 

ax E I n O (x) C_ xI n-k C xI c, it follows that a E U + (0)  : x. Hence for n > k + c 

(I  n : x )  = (U : x )  N (P'  + (0) : x )  = (U N ( I  n : x ) )  + (0)  : x = I n-! + (0) :x.  [] 

Notice that i f  R is a local ring with infinite residue field and x E I \ mI  is a 

superficial element for I of  degree 1, then k = R/(x)  is a Noetherian local ring with 

an infinite residue field and p(/~) -- Iz(1) - 1, so that by  induction on kt(1) and by 

applying Corollary 3.5, we shall obtain the following. 

Corollary 3.6. Suppose R is a Noetherian local ring with an infinite residue field. 

Then for  any ideal I o f  R, there are xl . . . . .  x~ E I such that I = (xt . . . . .  x~) and such 

that 

(i)  V1 < i < t ,  

((0) : x~'R,_l)NInRi-~ = 0 Vn >> 0 

and 

( i i)  Vl < i < t ,  

InRi-~ : x i R i - !  = I n - l R i - !  -k (0) : x i R i - I  ~/n ~ O, 

where Ro = R and Ri = R/(x~ . . . . .  xi) f o r  i = 1 . . . . .  t - 1. 

For rings satisfying the assumptions in I..emma 3.4, we also have the same conclu- 

sJLon: 

Corollary 3.7. Let  R be as in Lemma 3.4. Then for  any ideal I o f  R, there are 

xl . . . . .  xt E 1 such that I ~- (xl . . . .  ,xt)  and that 

(i)  V1 < i < t ,  

( ( O ) : x ~ R i - 1 ) O l n R i - 1  = 0 Vn >> O 
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and 

( i i )  V1 < i < t, 

InRi-1 : xiRi-I ~- In- lRi_ l  + (0) " xiRi-1 Vn >> 0, 

where Ro = R and Ri = R/(Xl . . . . .  xi) for  i = 1 . . . . .  t -- 1. 

Proof.  Let {xl . . . . .  xt} be a generating set of  I;  then by Corollary 3.5 there is an 

element x E 1 of  the form ~ I - 1  2ixi with 2i E A satisfies (i) and (ii) of  Corollary 3.5. 

Let k = R/(x); then [ -- (22 . . . . .  ff~), so that by induction on t, we shall obtain the 
assertion provided that the image /] o f  A in /~ is infinite and satisfies (1) and (2). 

However, since I is proper, ( l )  and (2) hold trivially. Also, from the fact that S(A,2)  

consists o f  units and 0, we see that if 21 ¢ 22, then 2x - 22 is an unit, so that/~1 • ~2. 
It follows that .3 is infinite. [] 

What Corollaries 3.6, 3.7 and Theorem 3.1 imply are our main results. 

Theorem 3.8. Suppose R is a Noetherian local ring with an infinite residue f ie ld  Let  

I be an ideal o f  R; then Vn >> O, I n can be generated by a quadratic sequence. 

Theorem 3.9. Let  R be a Noetherian ring containing an infinite subset A with the 

following properties: 

(1) Every element in A is an unit. 

(2) Vn > 1, the subset S ( A , n )  o f  R contains only units and O, where S ( A , n )  is the 

set o f  the determinants o f  all the n x n matrices with entries in A. 

Le t  I be an ideal o f  R; then Vn >> 0, I n can be generated by a quadratic sequence, 

Let R be a Noetherian ring and X be an indeterminant; then A = {X -n In > 0} is 

an infinite subset of  R[X ,X  -I  ] satisfies (1) and (2) in Theorem 3.9, so that we have 

Corollary 3.10. Let  R be a Noetherian ring and X be an indeterminant; then for  

every ideal I o f  R [X,X -1] and for  all n sufficiently large, I n can be generated by a 

quadratic sequence Vn >> 0. 

The following corollary is an extension of  [5, Theorem 5.2.3]. 

Corollary 3.11. Let  R be a ring and let {x~ . . . . .  xt} be a quadratic sequence un- 

der the natural order: xl < x2 < . . .  < xt. Let  I = (Xl . . . . .  xt)R; then Vn >__ 1 
n n--I n {Xl,X 1 X 2 . . . . .  xT-- lx t , . . . ,X t  } f o rm a quadratic sequence under the reverse lexico- 

graphic order 

< xi- x2 < . . .  < < . . .  < 

Proof.  Since {xl . . . .  ,xt} is a quadratic sequence by assumption, the assertion holds for 

n = 1, so we may assume that n > 2. 
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By Theorem 3.1, we need only to show that the integer N in Theorem 3.1 can be 
chosen to be 2. That is, the following hold: 

(i) V1 < i < t ,  

( ( 0 ) ' x n R i _ l ) n l n R i _ ~ - = 0  Vn> 2. 

(ii) V l < i < t ,  

InRi-t : xiRi-l = ln-~Ri-~ + (0) " x iR i - i  ~/n >__ 2, 

where R0 = R and Ri = R/(Xl . . . .  ,xi) for i = 1 . . . . .  t -  1. 

Notice that if {x~ 1 2 E A} is a quadratic sequence and x is the smallest element of  
{x:, I 2 E A}, then by Definition 2.2 ((0) : x) N (x) C((0)  : x) N X = 0, hence (0) : x ~ = 
(0) :x ,  it follows that 

((o) :x" )  n x  n = ((o) : x )  n x "  c ( ( o )  : x )  n x  = o, 

Vn > 2. Furthermore, by [6, Corollary 9.7], we have ( x ) N X  n = xX " - I  Vn > 1. 

Since Vi = 1 . . . . .  t, the images of  {xi . . . . .  xt } in Ri-1 also forms a quadratic sequence 
by [6, Remark 9.4], by applying the above criterion on {xi . . . . .  xt} in Ri-1, we can see 
easily that (i) and (ii) hold. [] 

4. Applications 

By using the results we obtained in Section 3, we are able to show the following. 

Theorem 4.1 (Johnston and Katz [4]). Let R be a Noetherian ring and I be an ideal 
of  R; then Vn >> 0, reltype(I ~) < 2. 

Proof.  Since R > R[X,X -1] is a faithful fiat map, by [8, Lemma 4.1], reltype(I n) 
= reltype(lnS), where S = R[X,X-I]. Therefore, we have to show that reltype(lnS) < 
2 for n >> 0. However, this simply follows from Corollary 3.10 and [6, Corollary 9.8]. 

Theorem 4.2 (Brodmann [1]). Let R be a Noetherian ring and I be an ideal of R. 
Then Ass(R/I n) is independent of  n for sufficiently large n. In particular, Un>lAss 
(R/I n ) is finite. 

We need the following lemma. 

Lemma 4.3. Let  R be a ring and I be an ideal of  R. Suppose that there is an element 
x E I such that 

(i) ( ( O ) : x  ~ ) N I  ~ = 0  Vn>_N 
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and 

(ii) I n : x = l "- l  + (O) " x Vn >_ N 

for  some integer N > O. Then 

Ass(R/I  N) C Ass( R/I  x + l ) C_ Ass( R /I N + 2 ) C_ . . . . 

Proof. Let n _> N; then by (ii) 

0 , R / ( I  n + (0) "x)  ~ R/I  "+l 

is exact, so that Ass(R/ ( I  n + (0) " x ) )  C_ Ass(R/I  n+l). Furthermore, since 

0 , (I" + (0) :x)  R/I  n - -~  R/ ( I  n + (0) "x)  , 0  
I n 

is exact, and by (i) 

( I"  + (0) . x )  ~ (0) x 
- ( 0 ) : x ,  

I" ( (0 ) '  x) DI" 

we obtain that 

Ass(R/I")  C_ A s s (  (I" + (O) " x)  n U Ass(R/(In + (O) " x ) )  

C_ Ass((O) : x)  kJ Ass(R/I  n+l). 

However, we also have 

(I n+l + (0) ' x )  
l ,+l ~-- (0) : x, 

it follows that 

Ass((  0)" x)  = Ass ( (In+l 1 "+1+ (0 ) '  x) ) C_ Ass(R/U + 1), 

and Ass(R/I  n) C_ Ass(R/I  "+l). [] 

Proof of Theorem 4.2. Let S = R[X,X- I ] .  Notice that i f J  is an ideal of R and {Pj} 

is the set of the associative prime ideals of J ,  then {PjS}  is the set of the associative 
prime ideals of JS. Therefore, we need only to show the assertion for S. 

Let I be an ideal of S; then by Corollary 3.7 there is a generating set {xl . . . . .  xt} 

of I and an integer N > 0 such that 

(i) V1 < i < t ,  

( ( o ) .  n = _ .xiRi_l)FllnRi_l 0 V n >  N 
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and 

(ii) V1 < i < t ,  

InRi-I "xiRi- l  = In- lRi -1  + (0) : xiRi-1 Vn > N, 

where R0 = R  and Ri = R / ( x l  . . . . .  xi) for i = 1 . . . . .  t -  1. 

C l a i m .  Vn >_ N 

Ass(R/I  "+2 ) \ Ass(R/I  n t l )  C_ Ass(RI/In+ZRI ). 

Let n > N; then by (i) 

I n + ( 0 )  : Xl ~ I n I n I n 

I n+l + (0 )  : xl I n n ( in+l  + (0 )  ' x l )  1 "+1 + I" • ( ( 0 )  " Xl)  I "+1' 

Furthermore, by (ii) 

0 ~ R / ( l n + ( O ) : x l )  X~R/( In+l)  

is exact, so that from the short exact sequence 

I n + ( 0 )  : xl 
0 ----* + R / (U  +1 + (0) : xl ) , R / ( I  n + (0)"  xl ) > O, 

1 "+1 + (0) " xl 

we obtain 

Ass(R/( I  n+l + (0)"  Xl))  C_ Ass ~ - ~  U Ass(R/( I  n + (0) : x l ) )  C_ Ass(R/I  "+l). 

Moreover, since 

O ----~ R/(In+l + (O) : x l )  - ~  R/ ( I  "+2) , RI/I"+2R1 - - -*0  

is exact, we see that 

Ass(R/I  n+2) \ Ass(R/I  n+l ) c_ Ass(R/I  n+2) \ Ass(R/( I  "+l + (0) " xl )) 

C Ass(R1/In+2Rl ), 

and the proof  of  the claim is complete. 

We now prove the assertion by induction on t. I f  t = 1, then by the claim, 
Ass(R/I  n+2) \ Ass(R/I  n+l) C_ Ass(R/(x l ) ) ,  Vn >_ N.  Since Ass(R/(Xl))  is finite and, 

by Lemma 4.3, 

Ass(R/I  N) C Ass (R /F  '+1 ) C_ Ass(R/I  N+2 ) C . . . , 

the assertion holds. 
I f  t _> 2, then again by the claim we have Ass(R/I  "+2)\Ass(R/I  n+l ) c_ Ass(R1/In+ZR l ) 

C [..Jn>1Ass(RI/InRI), Vn > N. Since, by induction, Un>_IAss(R1/InR1) is finite, the 

assertion follows by Lemma 4.3. 5 
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